SemEval-2007 Task-17: English Lexical Sample, SRL and All Words

نویسندگان

  • Sameer Pradhan
  • Edward Loper
  • Dmitriy Dligach
  • Martha Palmer
چکیده

This paper describes our experience in preparing the data and evaluating the results for three subtasks of SemEval-2007 Task-17 – Lexical Sample, Semantic Role Labeling (SRL) and All-Words respectively. We tabulate and analyze the results of participating systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUS-ML: Improving Word Sense Disambiguation Using Topic Features

We participated in SemEval-1 English coarse-grained all-words task (task 7), English fine-grained all-words task (task 17, subtask 3) and English coarse-grained lexical sample task (task 17, subtask 1). The same method with different labeled data is used for the tasks; SemCor is the labeled corpus used to train our system for the allwords tasks while the labeled corpus that is provided is used ...

متن کامل

USYD: WSD and Lexical Substitution using the Web1T corpus

This paper describes the University of Sydney’s WSD and Lexical Substitution systems for SemEval-2007. These systems are principally based on evaluating the substitutability of potential synonyms in the context of the target word. Substitutability is measured using Pointwise Mutual Information as obtained from the Web1T corpus. The WSD systems are supervised, while the Lexical Substitution syst...

متن کامل

HIT-WSD: Using Search Engine for Multilingual Chinese-English Lexical Sample Task

We have participated in the Multilingual Chinese-English Lexical Sample Task of SemEval-2007. Our system disambiguates senses of Chinese words and finds the correct translation in English by using the web as WSD knowledge source. Since all the statistic data is obtained from search engine, the method is considered to be unsupervised and does not require any sense-tagged corpus.

متن کامل

Tor, TorMd: Distributional Profiles of Concepts for Unsupervised Word Sense Disambiguation

Words in the context of a target word have long been used as features by supervised word-sense classifiers. Mohammad and Hirst (2006a) proposed a way to determine the strength of association between a sense or concept and co-occurring words—the distributional profile of a concept (DPC)—without the use of manually annotated data. We implemented an unsupervised naı̈ve Bayes word sense classifier u...

متن کامل

HIT-IR-WSD: A WSD System for English Lexical Sample Task

HIT-IR-WSD is a word sense disambiguation (WSD) system developed for English lexical sample task (Task 11) of Semeval 2007 by Information Retrieval Lab, Harbin Institute of Technology. The system is based on a supervised method using an SVM classifier. Multi-resources including words in the surrounding context, the partof-speech of neighboring words, collocations and syntactic relations are use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007